Archive for the ‘Qt’ Category

Progressing towards Next

Wednesday, March 12th, 2014

In the Plasma team, we’re working frantically towards the next release of the Plasma workspaces, code-named “Plasma Next”. With the architectural work well in place, we’ve been filling in missing bits and pieces in the past months, and are now really close to the intended feature set for the first stable release. A good time to give you an impression of what it’s looking like right now. Keep in mind that we’re talking Alpha software here, and that we still have almost three months to iron out problems. I’m sure you’ll be able to observe something broken, but also something new and shiny.

For the first stable release of Plasma Next, we decided to focus on core functionality. It’s impossible to get every single feature that’s available in our long-term support release KDE Plasma workspaces 4.11 into Plasma Next at once. We therefore decided to not spread ourselves too thin, and set aside some not-quite-core functionality for now. So we’re not aiming at complete feature parity yet, but at a stable core desktop that gets the work done, even if it doesn’t have all the bells and whistles that some of our users might be used to, yet.

)

Apart from “quite boring”, underlying “system stuff”, we’ve also worked on the visuals. In the video, you can see an improved contrast in Plasma popups, effects in kwin have been polished up to make the desktop feel snappier. We’ve started the work on a new Plasma theme, that will sport a flatter look with more pronounced typography than the venerable Air, and animations can now be globally disabled, so the whole thing runs more efficiently on systems with slow painting performance, for example across a network. These are only some of the changes, there are many more, visible and invisible.

We’re not quite done yet, but we have moved our focus from feature development to bugfixing, the results of that are very visible if you follow the development closely. Annoying problems are being fixed every day, and at this rate of development, I think we’re looking at a very shiny first stable release. Between today and that unicorn-dances-on-rainbows release lie almost three months of hard work, though, and that’s what we’ll do. While the whole thing already runs very smooth on my computers, we still have a lot of work to do in the integration department, and to translate this stability to the general case. Systems out there are diverse and different, and only wide-spread testing can help us make the experience a good one for everybody.

Are your Qt builds going OOM?

Tuesday, March 4th, 2014

If you’re, like me, regularly building Qt, you probably have noticed a decent hunger for memory, especially when linking Webkit. This part of the build can take well over 8GB of RAM, and when it fails, you get to do it over again.

The unfortunate data point is that my laptop only has 4GB, which is enough for most (but one) cases. Short of buying a new laptop, here’s a trick how you can get through this part of the build: Create a swap file. Creating a swapfile increases your virtual memory. This won’t make it fast, but it at least gives Linux a chance to not run out of memory and kill the ‘ld’ process. Creating a swapfile is actually really easy under Linux, you just have to know your toolbox. Here’s the quick run-down of steps:

First, create an empty file:

fallocate -l 4096M /home/swapfile

Using the fallocate syscall (which works for newer kernels, but only for btrfs, ext4, ocfs2, and xfs filesystems), this can be done fast. In this example, I have enough space on my home partition, so I decided to put the swapfile there. It’s 4GB in size, which should be plenty of virtual memory to finish even the greediest of builds — your mileage may vary. If you’re not able to use fallocate, you’ll need a bit more patience and dd.

As your swap should never be readable by anybody else than root, change its permissions:

chmod 600 /home/swapfile

Next, “format” the swapfile:

mkswap /home/swapfile

Then, add it to your virtual memory pool:

swapon /home/swapfile

You can now check with tools like `free` or `top` (tip: use the much nicer `htop` if you’re into fancy) that your virtual memory actually increased. Once your build is done, and you need your disk-space back, that’s easy as pie:

swapoff /home/swapfile
rm /home/swapfile

If you want to make this permanent (so it’ll survive a reboot), add a line like the following to your fstab:

/home/swapfile none swap defaults 0 0

This is just a really quick tip, more details on this process can be found in the excellent Arch Wiki.

Next means Focus on the Core

Friday, February 21st, 2014

The metaphor of a home make-over crossed my mind today, and I think it implies a few ideas that connect to Plasma Next quite well.
Plasma Next
Plasma Next is a new iteration of the Plasma workspaces. This is the first time, that KDE’s workspace is released independently from its underlying libraries and the applications accompanying it. It is built upon KDE Frameworks 5 and Qt5. “Plasma Next” is our name for the development version of Plasma, the final product will not be called “Next”. The planned release does not include the applications that are shipped today as part of the KDE Software Compilation. Applications, just like the Frameworks follow a different release schedule. Of course it’s entirely possible to run KDE SC 4 Applications on a Plasma Next desktop, and vice versa.

We have now settled on a release schedule for Plasma Next, which plans for the first stable release in June. It’s a good time to talk about what’s to expect in this first release. I think we’ve got some pretty exciting improved technology in the works. As our new baby shapes up, let’s take a look at what’s old and what’s new in more detail.

Frameworks 5

Plasma Next bases on KDE Frameworks 5, which is a modularized version of the venerable KDE development platform, kdelibs and friends, so to say. This results in a reduced footprint in terms of dependencies. The Plasma libraries and runtime components are one of those Frameworks itself, providing the tools to build applications and workspaces. Plasma has been one of the early adopters of Frameworks 5, mainly for the reason that we had to do some development in parallel. While building on an unstable base wasn’t always easy, it certainly has its benefits: We could check the viability of the Frameworks goals, and catch regressions early on. A good test harness only goes so far, actually building a real world application with the libraries makes sure they’re stable and functioning. These days, the issues are gone, KDE Frameworks has stabilised enough that applications can be ported quite easily.
With the move to Frameworks 5 come some architectural changes that allow us to cut out some “runtime fat”, we can get rid of some separate processes with the new architecture, which results in a leaner system for the user.

QtQuick for the UI

Plasma Next wallpaper selection

Plasma Next wallpaper selection


The transition to QtQuick reaches a very significant milestone in Plasma Next: the whole UI is written in QML. This concludes a transition process which we’ve started in Plasma 4.x, as a side-effect it solves a whole class of long-standing quality and maintenance problem in the code, it means a higher quality for many users. The transition to QtQuick-based UI has been fairly smooth so far, so we are not jumping onto something entirely new here, which means that we have been able to port much of the existing and matured functionality from Plasma 4.x over to Plasma Next. Our QML APIs have not changed radically, so porting existing code written in QML to Plasma Next is not a huge amount of work. For add-ons written in other languages (UIs written in C++, Python and other languages are currently not supported, this is a conscious design decision, and unless there are QML bindings for these languages (which seems like a weird idea), this is unlikely to be supported in the future. Instead we’ve improved and matured the QML API to a level where it’s very easy to create almost anything you can dream of in QML.

New Graphics Stack

Plasma’s graphical stack reaches a new state-of-the-art this year. We are now able to fully offload the rendering of the UI into threads, and other processes, making the UI responsive by default. We also offload visual effects almost entirely onto the graphics card. This means that it’s faster, so you get better framerates out of it, it frees up CPU time for the user and it’s also more energy-efficient, so saves some battery life.
In case the system falls back to software rendering, we can now centrally disable animations, so even on systems that paint slowly, or we can reduce repaints drastically to give a snappy feel. This means that the visual effects in the UI degrade gracefully with available graphics features on the system. For the vast majority of users, this isn’t an issue anyway, their systems run a fully hardware-accelerated desktop with complete ease. On these systems we can improve the user experience by using the graphics card’s capability — and not only that: The transition to QtQuick 2, which is part of Qt5 means that all the work at UI level can be offloaded onto the GPU as well.

Another hot topic these days is Wayland readiness. This is currently work in progress, Martin Gräßlin’s blog shows some impressive progress on running KDE applications on Wayland. This is one of many important milestones. The most complex case is running a full Wayland session with Plasma and KDE applications, and we are not there yet. Wayland support is continuously improved.

Polished Interaction

Let's try a dark theme

Let’s try a dark theme


Next to these architectural changes, we’ve also put some work into the actual UI visuals and interaction. We are in the process of establishing a Visual Design Group in KDE. Which already participates in the development of Plasma Next. The first results of this will be visible this summer, and the group is currently hashing out plans for the future. There is some serious design love appearing. You can follow the progress of it on the wheeldesign blog.

One of my favourite new features that has recently landed is Marco’s work on contrast behind translucent dialogs, which hugely improves readability in many cases, and make “the old Plasma” almost look bland in comparison. We’ve cleaned up quite a lot of workflows, not by making them any different, but by removing visual noise in between. The idea is to polish common elements to feel fresh and like an upgrade to users, but not entirely different. In the UI, known behavioral patterns are kept in place, with more pronounced core functions, and less fuzz around them. We’re aiming at keeping all the functionality and adaptability in place. To the user, the migration to Plasma Next should feel like an upgrade, not something completely new, but trusted after a bigger step in its evolution, yet recognizably true to its values.

We want to achieve this by concentrating on the core values, on what makes us good, and what users love us for. But we also do not want to pass the opportunity to fix what nags us and our users. Improvements in details mean that we listen to our users, a large portion of which do not want to be the subject of UI experiments, but who require a reliable system that supports and improves the personal workflows they have almost brought to perfection.

Of course, all of these workflows rely on many details behaving as they do, and these things are different for everyone. A small difference in behavior, or a missing seemingly minor feature might make or break any given workflow, there is no guarantee to be made, just a promise of best effort.
Many, but not all parts are co-installable, and it will be possible to use KDE SC 4 applications in a Plasma Next environment, and vice versa.

Beyond Devices

Plasma Next runs on top of a device-independent shell. The whole UI is structured into logical blocks that can be exchanged at runtime, this allows for dynamic switching the user interface to suit a different form factor. A target device will typically have the plasma-shell (and runtime bits) installed, and one or more device-specific shells. We are now readying the first of these “workspace user experiences”, Plasma Desktop. Others, such as the tablet-oriented Plasma Active UX will join in subsequent releases.

When will it be good enough for me?

While no .0 will ever be perfect, I expect that Plasma Next.0 will feel very much like an evolutionary step to the user, and certainly miles away compared to the impact of Plasma in KDE 4.0. For those that still remember the transition from KDE 2.2 to KDE 3.0, this seems rather comparable. While KDE 2 was almost a complete rewrite of KDE 1, the 2 to 3 transition was much less radical and far-reaching. We saw the same pattern between KDE 3 and 4, which again was quite radical, especially in and kdelibs and even more so for the workspace — Plasma which was completely new in 4.0.

In the first stable release of Plasma Next we want to provide a stable and fully functional core desktop. We concentrate on making the most important default functionality available, and are polishing this first and foremost. I expect that most users can be just happy with this first release, but as I said, there’s no guarantee, and maybe you’re missing something. For those that want to make the switch later, we have of course our long-term maintained current Plasma stable, so there’s no rush.
This concentration on the core also means that not every single feature will be available immediately. We are, however aiming at feature parity, so in most cases, a missing feature in .0 will be brought back in a later release. The kdeplasma-addons module, which contains additional functionality will likely not be ported by summer.

Ultimately, the way to make a good Plasma Next happen is to lend us a hand and take part. Even better, you don’t have to wait with this until summer. Take the plunge, build KDE Frameworks 5 and Plasma Next, try it and help us completing the core functionality and to fix bugs. That is exactly what we will be doing in the next months leading up to the release this summer, and we hope the experience will be delightful one for our users.

DBus-Activated Systemtray Plasmoids

Tuesday, February 11th, 2014

In this article, I’m describing a way to dynamically load Plasmoids into the systemtray. It’s interesting for you if you develop Plasma addons, or if you’re interested in the design of Plasma by KDE.

One of the wishes that came up during the latest Plasma sprint in Barcelona was a more dynamic way of showing functionality in the systemtray, that little notification area sitting in the panel next to the clock. The systemtray can have different kinds of “things” in them: Statusnotifiers, which are basically systray icons of applications, and Plasma widgets, which allows for much more functionality and freedom in UI development. Statusnotifiers are instantiated by applications, so their lifetime is entirely in the hands of the application they belong to. For Plasma widgets, this is a bit different, they’re currently loaded on startup. Ideally, we want to load specific services on-demand, say when a specific service becomes available.

You may have guessed by the title already, this feature has now landed in Plasma Next. It was actually quite easy to do, yet it’s a very powerful feature. First, let’s see what it looks like:

This feature allows loading and unloading Plasmoids when dbus services come and go. Applets can specify in their metadata which service should control their lifecycle.

This has the following advantages:

  • We can dynamically only load widgets when they’re useful, reducing clutter in many cases
  • Applications can provide widgets that appear and disappear based on the application running
  • We can load controls for system services dynamically as they come and go
  • It makes it easier to delay loading of widgets in the systemtray until when a specific service appears, cutting down startup time
  • It makes widgets and their features more discoverable as they’ll be able to appear automatically

One immediate user for this is the media controller widget, which will now only be loaded once an MPRIS2-compatible media player is running (as indicated by a dbus interface becoming available on the session bus.)

How do you do that? It’s quite easy. Two things need to be done: the widget should indicate to be loaded into the systemtray automatically, and it needs to specify a service which triggers loading it. That’s two lines in your metadata.desktop file, looking like this for example:

X-Plasma-NotificationArea=true
X-Plasma-DBusActivationService=org.mpris.MediaPlayer2.

That’s all. Enjoy your cleaner, more dynamic systemtray!

Reasonable DPI in Plasma Next

Friday, February 7th, 2014

We are currently looking into how we can improve Plasma (but in extension also other applications, including QWidget-based ones) on hardware that sports unusually high DPI (also called “reasonable DPI”). In this article, I’ll outline the problem space and explain our tools to improve support for high DPI devices in Plasma.

First, let’s take a step back, however, to explain the problem space to those who haven’t yet spent that much thinking on this. Most of today’s desktops and laptops have have roughly the same amount of pixels per square inch of screen space. The amount of pixels per inch is measured in DPI (dots per inch) or PPI (pixels per inch). This value is around 100 DPI for laptops. Tablets and smartphones are already available with much higher DPI screens, making for sharper fonts and overall higher fidelity graphics. A while ago, Apple has started producing laptops with high DPI displays as well, these are the so-called Retina screens. There are Macbooks on the market with 220 DPI.

Test Plasmoid showing a scaled UI

Test Plasmoid showing a scaled UI

Some people have complained for years about the low DPI value of screens available on the market (and I am one of them), higher DPI simply allows for nicer looks, and reduces the need for “dirty tricks” such as subpixel rendering algorithms (which come with their own set of problems). Graphics chips also have become fast enough (and with enough memory) to not have a problem with high resolutions (think 4K on your laptop, for example).

I’ve done some research (Well, lazy-webbing, mostly), and it seems that higher DPI screens for desktop systems, but also for laptops are still quite rare, and when you find one, they’re often really, really expensive. I believe this is caused by two reasons: production-line quality is not always good enough to produce high DPI screens, one could say that the more pixels there are on a given device, the higher the chance that one or more of them are dead, making the display unsellable, and thus increasing the price of the ones that are pixel-perfect. Also, tablets and smartphones, which often already sport high DPI screens are currently taking up almost all of the production capacity. The obvious result is scarcity and a high price. I believe it’s only a matter of time until high DPI displays become more common, however. A few friends of mine already have high DPI displays, so there is a real need to support this kind of screen well.

Battery Widget without icon scaling

Battery Widget without icon scaling

So what’s the problem? Many applications assume a fixed DPI size, or at least that the DPI value of the screen is within a certain range, so that when you render an icon at 22 pixels, it will look like a small icon, compared to text, and that its details are visible. Also, icons and sizing of fonts are loosely related, so an icon that is way smaller than the size of the text as rendered will look weird and cause layouting problems. (Imagine huge letters and cut off text, for example.)
For graphical elements, this is a real problem, but less so for text. Today’s text rendering engines (Freetype, for example) take the DPI value of the screen into account. This means that this at least partly solves our problem. Luckily, it solves the problem for very complex cases, so at least this is not of great concern. It’s only a partial solution, however, so this at best eases finding a complete solution. We need to fix these problems in different areas, and all need to have well-thought out solutions.

Limitations in X11

The bad news is that this problem is only partly solvable in an X11 world. X11 has no real concept of different DPI values per screen. This is not so much a problem for single screen systems — we just use the DPI of the only screen. As soon as you attach a second screen that has a different DPI, this is going to be a problem, and it’s not possible to solve this completely in an X11 world. We’re planning to first make it work in a single DPI environment, and then work towards supporting different DPI values per screen. (Of course we’ll keep multi-DPI-screens in mind, so that we don’t have to take too many steps back once we are actually in a position to be able to support this. This means Wayland, basically.)

Battery Widget using icon scaling

Battery Widget using icon scaling

Cheating with fonts

A pretty easy, yet neat solution is to use font metrics to compute sensible dimensions for graphical elements on the screen. The very short version is to stop thinking in numbers of pixels, and to start thinking in lines of text and with of characters as they end up on the screen. This is not a pure solution to the DPI problem, which in many cases is actually an advantage. The size (for example height) of a given letter rendered on the screen depends on a number of properties:

  • The DPI value of the screen which is used to render the text
  • The font size setting
  • The size of the font itself, as it is designed (this is usually more relevant for the aspect ratio between width and height)

This means that taking the font height as rendered, we actually can compute values for sizing elements that not only take the low-level technical properties of the hardware into account, but also user preferences (or system presets). In Plasma 2, we started using this mechanism in a number of places, and so far we’re pretty happy with the results. Some examples which where we use this is the sizing of popups coming out of the panel (for the notification area and the calendar for example), but also the sizing of the icons in the notification area (or system tray). This means instead of hardcoding pixel sizes, these UI elements grow and shrink depending on your settings. This solves a part of the problem, but is obviously not a complete solution. If you would like to implement this mechanism, here’s two snippets of code, which, with some necessary adaption, you can use to make your app work well on High DPI devices.

in Qt C++ code:

const int fontHeight = QFontMetrics(QApplication::font()).boundingRect("M").size().height();

This gives you the height of the letter “M” as it would be rendered on the screen. It’s a useful mechanism to get you a pixelsize that is dependent on the DPI value of the screen. Note that you want to use an int here, in order to not end up aligning UI elements at half pixels, as this leads to blurriness in your UI.)

We’ve bridged this API in the Plasma Theme class, which is available from QML applications by importing org.kde.plasma.core (the global property theme will be automatically set, which allows you easy access to Plasma::Theme from everywhere, in case you’re wondering where the “theme” variable is coming from).

import org.kde.plasma.core 2.0 as PlasmaCore

/* Paint an orange rectangle on the screen that scales with DPI 
   This example makes the rect big enough to paint about 8 rows
   of text (minus spacing), and allows for a column with of about 
   60 characters. Mileage varies on fonts used, and the text 
   itself, so this is an approximation.
 */
Rectangle {
    width: theme.mSize(theme.defaultFont).height * 8
    height: theme.mSize(theme.defaultFont).width * 60
    anchors.margins: units.largeSpacing

    Item {
        anchors.fill: parent
        /* ... more stuff ... */
    }
}

In the second example, you see that we’re using another property, “units.largeSpacing” for the margins. This is another piece of DPI-dependent UI which you can use to apply margins and spacing that take DPI (actually font-as-rendered-settings) into account.
To get the size of a piece of text on the screen, in QtQuick code, you can use the paintedWidth property of a Text elements, but not that this can be tricky due to text elision, line breaks, etc., so this is to be dealt with with care.

Icons and other graphical elements

Another interesting case which affects the usability of our graphcal interfaces on high-DPI screens is the sizing of icons. We are using standard sizes there, which you access via properties “units.iconSizes.small”, “units.iconSizes.large”, etc.. In Plasma, these sizes now get interpolated with the DPI value of the screen, while making sure the icons are still getting rendered correctly. The sizing is done in steps, and not linearly to avoid getting washed-out icons. This mechanism works well and automatically solves another piece of the puzzle. The result of doing this is a more balanced look and better alignment and spacing across some widgets (notably the battery gains quite a bit of beauty with this treatment).
In other UI elements, especially the toolkitty widgets we provide in PlasmaComponents, we often already scale with the text, which works just fine for reasonably-but-not-excessively high DPI values. We have done some experiments with scaling up the graphical elements that are used to, for example, render a button. As we are using SVG graphics throughout the user interface, we don’t have to resolve to dirty tricks such as doubling pixels, and we can get quite neat results. This needs some more work, and it hasn’t been merged into master yet.

The Higher-Level Picture

Now, having discussed lots of technical details, how does the user-facing side of this look and work? The changes we’ve done right now only affect the user in one way: More UI elements scale with the DPI of the screen, this means no change for displays around 100 DPI. On my laptop (which has a 180 DPI screen), this gives a more balanced picture.
As Plasma is making its way onto a wider range of target devices (think tablets, media centers, as well as high-dpi laptops or monitors), this topic becomes increasinly important. I have good hopes that we will be able to solve this problem in a way that really leverages the power of this kind of hardware. In Plasma Next, we’re now providing some of the basic tools to make UIs work well on high-DPI displays, and we’ll continue this route further on. The user will notice that in Plasma Next, most of the problems that could be seen on high DPI screen are gone, and that the whole behaves much better without many tricks.

Plasma and a new beginning

Wednesday, January 15th, 2014

The Plasma team is meeting in Barcelona, Spain these days to work on the next major version of KDE’s popular workspaces. As we are in a transition period, technically and organisationally, this is a very important meeting. I won’t go into too many details in this post, as they are still being fleshed out, but to give you an idea what we are talking about, here’s a quick run-down of some of the things we talked about.

Process & Transpareny

We do not have firm technical results, we are sharing the proposals we come up with here in the meeting on the Plasma mailinglist for feedback first. This is a change we are making in our development and decision-making process. In the past, we sometimes got the feedback that the Plasma team as a group appears a bit too exclusive to the outside. This stands in contrast to its architectural position. One of the things that make it very interesting to work on Plasma is the scope. This scope is usually work on the workspace UI, and of a specific technology. User interfaces don’t stand on themselves, but they express something and allow access. Examples are hardware integration, where issues like powermanagement, device management, etc. have to be presented in the workspace in a way that first of all makes sense technically, but that also is consistent with the way other “things” are presented, and that is beautiful and engaging with the user, while getting out of the way of doing real work. This is a thin line to walk, and in order to achieve great results, it needs close involvement from all sides.

Related to this is the transparency in decision-making processes. Some people have complained that decisions have been made inside a tight group, and that they don’t feel to be part of this process. This stands in the way of team growth (and no growth means shrinking), making it hard to maintain a high level of quality on the one hand, and on the other hand to improve existing functionality and develop new features. We want to change this. Of course this must not stand in the way of firm direction, but the responsibility has to be shared by more people, meaning that not one person is seen as responsible for more controversial changes, but we as a team stand behind it. This reduces stress on individuals, and leads to a fairer distribution of also the negative sides of responsibility.

Social environment

Lately, we’ve been struggling with an unwelcoming atmosphere in the Plasma communication channels. We’ve talked about this issue, and everybody present agreed that in order to keep our working environment pleasant, we have to be more friendly and respectful to each other. It’s totally not acceptable to lash out against each other, or to answer emails in condescending ways, to talk to people assuming they’ve bad intentions or anything like that. We need to rebuild some mutual trust, but we also need to step in when things threaten to escalate. As an in-person meeting is a good opportunity to talk about these issues in person, this was an important topic. My personal feeling is that we have reestablished strong standards, and everybody is on the same page and willing to defend this newly found balance. We all share the same goals, and we want our working environment to be friendly and enjoyable, as this forms the baseline for being productive and achieving great results as a team.

Drinking from the firehose

Finally, another topic was the situation of Plasma issues in KDE’s Bugzilla. We have a lot of bugs, and are currently lacking the resources to handle this stream of incoming bugs. We do need to do something about this, since it’s an important tool for support and to increase the quality of our codebase, and in extension the user experience. This means that we will, for the technological transitions deprecate a number of bugs of which we know fairly certainly that they do not apply in Plasma 2 anymore. We’ll also draw clearer boundaries around components supported by the core team (essential functionality), and community-supported addons. This means that we will be able to categorize and prioritize better, and hopefully get a grip on the rather messy situation in our issue tracker. Right now, trying to make sense of the issue reports for Plasma very much feels like this:

Visual Guidelines

On the design side, we’ve started on visual guidelines. This is a tool for us to achieve greater beauty and consistency across the components. Plasma 1 feels, in some places, like a collection of individual, separate components. This is of course true, and it has specifically and purposefully designed like that — it’s a good thing technically, but the architecture should not bleed into the visual appearance. We’ve done a lot of work to ensure visual consistency in our components, and we’d like to take this to the next level. For this reason, we’ve worked on visual design guidelines. We’ve taken the new Plasma calendar as a starting point, since that resonated very well with the community, and with professional designers, and we started to extract guidelines that are commonly applicable also to other parts. This is about usage of fonts, spacing and alignment. On the technical side of this, Digia’s Mitch Curtis, who works on the calendar components in QtQuick Components has joined us for a day of design, planning and hacking, so we have some really nice collaboration going on there as well.

Responsible Evolution

Thursday, November 14th, 2013
Plasma Desktop running on top of Qt 5 and KDE Frameworks 5

Plasma Desktop running on top of Qt 5 and KDE Frameworks 5

Exciting times. I am working on the lower-right corner of the desktop right now, and thought I could give a quick visual update of progress there, as well as some sense of direction where we’re heading, how the user interface evolves, Plasma’s new architecture, and underlying software stack and the device spectrum. A whole mouthful, so grab a cup of tea.

Two areas in particular are catching my attention these days, the notification area (“system tray”, that row of icons which show you the status of all kinds of things), and the clock with its calendar popup. The calendar shows quite nicely some things we want to pay attention to in Plasma 2: consistency and elegance. We are making more use of pronounced typography, are fixing alignment problems, and are looking for a generally more elegant way of presenting the common functionality. In that, the plan is not to make a lot of changes to the functionality itself, not cutting down the UI, but polishing what is already there. By reducing the workspace’s mental friction for the user makes the tools take a step back and give more room to the content and interaction that is presented. Doing that, the workspace should be functional, yet elegant. The migration should feel like an upgrade of something familiar. We want to make it functionality-wise equivalent, but more polished. On top of that, we’re readying the technology for future use cases, and evolution of the underlying technology stack.

Calender popping up from the Plasma panel

Calender popping up from the Plasma panel

QtQuick 2 actually makes these things a lot easier, as it is much more correct in terms of calculating font metrics reliably, which we need to (sub-)pixel-perfectly align text and other UI elements. Trying to make this exact in Qt4 and on top of QGraphicsView was a shortcut into madness. Ever so slightly off font metrics, and wonky layouts get you to tear your hair out pretty quicky. This is much better now, (though certainly not perfect in all areas), so it allows us to finally fix these jarring little mis-alignments that nag the eye. The calendar already does it pretty well, and serves as a nice example. This implementation takes the physical size of the pixel on the screen into account by correcting for DPI in the whole layout, so it works nicely on all resolutions and pixel densities. With higher pixel-density displays, the rendering gets more details, fonts look neater, but the size of interaction areas, and the effective size on the screen don’t change much. The screenshots have been taken on a 170 DPI display, so if the fonts seem huge on your display (or small, as I hope for you), this would be the reason for that.

Battery Monitor

Battery Monitor

In the notification area, you might notice that the widgets that have been living in there are now contained in the same popup. This results in less window management and layering of small popups in the notification area, clearer navigation and a cleaner look. The currently active icon has slightly pronounced visuals compared to the others.
The calendar will of course show information about tasks and agenda (this part doesn’t work yet). One neat thing which the new architecture allowed use to do very easily is lazy-loading the calendar. As just loading the calendar can result in quite a bit of loading underneath, delaying to loading it on-demand speeds up start-up time and lowers memory consumption in a lot of cases.

Below the surface, the changes are more radical. Qt5 and with it the move to QtQuick 2, the scenegraph-based successor to QtQuick 1, a new QML and javascript engine which is smaller and more optimized for Qt data types and conventions than V8, new sandboxing features, being able to render and composite pretty much entirely on the graphics card, share textures between compositor and workspace shell, addition of Wayland as a fully supported target platform, and along with all that new input and security features.

Network ManagementNetwork Management in the notification area

Network Management in the notification area

Plasma 2 is a converging user interface. It allows to control the Look and Feel at different levels. On the lower level / higher detail side of the scale, we look at adjusting input areas, sizing of ui elements, and interaction schemes by swapping out and “overriding” parts of the UI toolkit with, for example, touch friendly versions of widgets. On a higher level, we support laying out the furniture of the workspace (think of alt+tab window switcher, log in, lock, etc. features) by more code sharing and a different logic to how they’re loaded (and swapped out). Plasma shell allows dynamic switching of shell layouts at run-time. The shell is equipped to morph between workspace presentations, so should your tablet suddenly get a keyboard and mouse plugged in, it changes its disguise to a traditional (actually your own customized) desktop layout. While this is cool, in reverse, it allows us to isolate changes that are done to suit other devices from the “Desktop Experience”. Just because the workspace support multiple devices, the user doesn’t get the lowest common denominator, but specialization. Different devices are different for a reason, and so should the UI be. “Mobile-friendly” shouldn’t mean “misses features”, but “responsibly designed” (excuse the pun).

Our tricks allow to use the same system on a range of devices, with the user interface adopting to specialties of hardware it runs on, such as input, display, but also usage scenarios specific that device. Much like the Linux kernel, which “mostly figures out how to run properly in a device it’s booted on”, and which can be configured as small and as big as one wants, the user-interface uses “UI plugins” at different layers, and detects changes and adopts to the form factor. You use a media center “driver” if you want to use it on the TV in your living room, you use a tablet “driver” on your tablet on the go, you use desktop driver on the laptop, and you can switch the device’s UI when needed. Laptop or tablet + HDMI cable ~= media center, isn’t it?

Klipper manager showing the clipboard's content

Clipboard interaction

You see, many different construction sites. We’re working a lot on all these things and you should definitely consider joining. Nothing is set in stone yet, and you should consider the imagery functional mock-ups, rather than the final thing. It’s not perfect and lacking in all kinds of places, it even crashes in some and what is presented is just a snapshot of work in progress. Many details remain to be hashed out. Still, I’m running Plasma 2 about half of the time on my laptop now. It’s just about to be becoming usable and almost dogfoodable for more than just a very small handful of people with an elevated pain threshold and a debugger at hand.

“When?”, I hear you ask. We’re aiming at a stable, end-user ready release of the new Desktop shell in summer 2014, at the end of Q2. On of the next milestones will be a tech-preview, which is planned for mid-December, so just about a month away from today. From December, where we’ll reach the point of having the basic functionality in place, we’ll spend time on filling in the missing bits, making sure everything runs on Wayland, and on polishing and quality improvements. Integrating additional workspaces, such as Plasma Active and Plasma MediaCenter are also next year’s roadmap. These will become the tablet, resp. media center drivers.

Plasma Next: What’s changing?

Friday, November 1st, 2013

In the past week, we hit something that really feels like a milestone in Plasma development. Plasma 2 has become somewhat usable, at least if your pain level is high enough. It occurred to me after I realized after a few hours of using it that the workspace shell running on my laptop was not actually the current stable release of Plasma, but the development version. Great thing, I thought, went ahead and fixed a sizing bug in the systemtray widget, then changed the default layout to include Kickoff, Taskmanager and Systemtray in the panel, as these elements are the most important ones to have in the panel — exposure even to just our development team surely won’t hurt. This experience also marks a point where we have to take a step back and look at our general direction. Sure, we could do a “minimal port” and just make everything build and work on top of Qt5.

I can hack on Plasma2 using Plasma2!

I can hack on Plasma2 using Plasma2!


One of the technologies we’ve been using more and more in the Plasma workspaces is QtQuick, a declarative language that allows you to very easily write stunning UIs, without the need to use C++ for these parts. Our experience is that it makes developing, improving and maintaining applications a lot easier, and generally leads to much nicer user interfaces. QtQuick, being a very young technology in Qt4, has matured since then, and received a major technology update in Qt5. It moved from a traditional painter-based mechanism to a scenegraph model, and much closer onto the graphics hardware. That means that we usually get much better performance out of it, and that it allows a whole bunch of neat tricks on top of that. In Qt 5.2 (which is the Qt release we’re basing our work on), it received another big upgrade. The scenegraph renderer has been replaced, with huge performance gain as the result. (Read Gunnar’s article about it, it’s really impressive!) QtQuick also received a new QML engine, which brings major improvements to its internal data handling, but also to important topics such as maintainability. The new v4 engine uses Qt types internally, so a lot less marshalling is needed between runtime objects, and some architectural barriers have also been removed. Lars has written an excellent article about the new QML engine.

So on a technological level, we have decided to not do this. We want a more modular software stack underneath, so we decided to rework the KDE Development Platform into something that is more useful in its pieces. The result of that (the process isn’t finished yet, but rapture lines are becoming very visible) is KDE Frameworks 5, a modular set of Qt-based libraries with well-defined dependencies which separately are all very useful to 3rd party developers, and combined give you all the functionality to build highly integrated complex applications on top. Plasma next builds on Frameworks 5. In the past 1.5 years, we have spent a lot of time on reworking the build system and removing interdependencies between various “sublibraries” that made up kdelibs. This has progressed really well, we are in fact able to build and use many of our libraries standalone already. We’re currently restructuring the last libraries to accommodate a split, and will then “physically” split the libs into separate repositories. In order to not make the effort to build a KDE application or workspace explode, we have developed tooling that can build sets of modules for you. You get to choose the granularity we work with. In order to make it easier for third parties to find and use our libraries, we have set up Inqlude.org, which has information about these (and other) libraries. This is very much work in progress, but it does already give a good picture of what’s to come.

For the user, we want to keep this whole process as smooth as possible. Porting applications to Frameworks 5 is rather easy, as regarding kdelibs, it mostly involves changes to the build system, some mild Qt5 porting, and only a few API changes. It is nowhere nearly as disruptive as the move from KDE3 to KDE4 (yes, our software was still called KDE${N} back then!).
In Plasma, it’s a little more complicated, as much more changed under the hood (a completely new way to get graphics onto the screen, deprecation of larger parts of our API, more device-independence reflected in our architecture). Our goal for the first release is to not introduce functional regressions however. We want to keep the basic usecases of a Desktop fully working, preferably noticeably improved. In the past years, we have already moved a lot of the individual components (such as the task manager, widgets for battery, network management, etc.) that make up our workspace to QML, this pays off now as those things are rather easy to port, and give a very mature impression right off the bat. We do realize that we have some cleaning up to do, and now is a good time to do this. We want to introduce a greater degree of consistency across the workspace experience. Technically, this can be achieved by more and smarter sharing of code, so common UI patterns become more, well, common. Plasma’s design language will be more pronounced, and at the same time, easier to change to your liking. More on that in another article, however.

As it currently looks like, we will release a first technology preview of both, Frameworks 5 libraries and Plasma Next in December. This won’t be a complete thing by any means, but a way to check on and gauge progress. At the same time, you’ll get to have a good look at Plasma Next, which, while building on the new technology stack, will resemble our current offering quite a bit still. It is much more a technology preview, than a user experience preview. So don’t judge too early, rather, get your hacking shoes on and join the fun. :)

Reconstructing Plasma

Monday, October 28th, 2013

Desktop Workspace with Widgets Explorer

Desktop Workspace with Widgets Explorer

We are currently in the process of porting bits and pieces that make up Plasma Desktop to QtQuick2, KDE Frameworks 5 and Plasma 2. In this endeavour, we are going over all the basic components, such as Kickoff, the task manager, the pager, the system tray, battery and network management widgets, and of course the clock. We are also porting other workspace components such as the powermanagement policy daemon (powerdevil), the KDE Daemon (kded) and the splash screen.

For Plasma components, this work involves first porting C++ portions of the code to Qt5 and adjusting the build-system to build this code against Qt5 and Frameworks 5 libraries, which have been split up. C++ code has to be moved into imports, which can then be used from QML code.
Configuration dialogs in Plasma 2 are something, we have redesigned. As all other UI code, the configuration dialogs seen in Plasma are also moving to QML. In Plasma 1, the configuration is done using traditional widgets. This made it hard for developers to provide complex configuration user interfaces without having to write these portions in C++. In Qt 5.1, QtQuick Controls have arrived, and are further polished in Qt 5.2. QtQuick controls are traditional widgets, done in QML instead of hand-written C++ layouts or Qt Designer .ui files. They reuse the widget styling engine (the Oxygen style, for example), but you can write these in QML. This allows us to keep the user experience. Plasmoids in Plasma 2 now use QtQuick, and get the full possibilities along with that.

Desktop settings and Toolbox

Desktop settings and Toolbox

Over the past years, we have already moved most of the standard elements of a Plasma workspace to QML, which greatly simplifies porting. To the user, this will not feel like a rewrite, but like an update of the user experience.
In many ways, Plasma 2 will be very similar to what is known today, and that’s a good thing. Familiar interfaces that have been developed and polished over the years provide great value, we definitely want to keep the work that has gone into that, but we also want to elevate its possibilities going forward to a new level. While going over the code, we often improve things here and there, so it’s not just a “stupid port” but provides actual value to the user. From a UI point of view, we expect Plasma 2 to be an evolutionary release, which, while keeping existing workflows intact gives us greater flexibility in how the system is set up, and used. The move to Plasma 2 means that we can improve on things that have been nagging us architecturally, so we can get rid of some accumulated baggage. Then, there is of course Wayland, which we aim at fully supporting in Plasma 2.

Notifications

Notifications

In the screenshots, you can see a few of our widgets that make up the desktop, just to give you an idea of what is there right now. Some elements have just seen straight ports (the network management and battery widgets, for example), others are in the process of being reimplemented. One of the things that we will likely improve it the layout of the widgets explorer, which you can see in the first screenshot. The horizontal list does not work very well in practice (in theory it really does! ;-)), as it is harder for a human brain to scan a horizontal list, compared to a vertical one.

When looking at the screenshots, keep in mind that this is all very much work in progress, and that almost all the work has been done on the underlying architecture (KDE Frameworks 4 and the Plasma Framework), and that we are only now starting to shift towards more UI-oriented work. For that purpose, we will have a meeting on IRC later this week to hash out further strategies and take the pieces we have now to make it One. More on that, however, later.

As an exercise to the reader, what improvements and bugs and missing things can you notice? :)

Kickoff Launcher

Kickoff Launcher

Network Mangement

Network Mangement

Battery Monitor

Battery Monitor

Notification Area a.k.a System Tray

Notification Area a.k.a System Tray

Plasma 2 Snapshot Demo

Wednesday, September 11th, 2013

For those interested in the progress of KDE Frameworks 5 and Plasma 2, I’ve recorded a demo video which shows a few aspects of the current state of development of the upcoming version of your favourite Desktop.

The demo video shows the new Plasma shell running, including a panel with the task manager. It shows a demo applet doing some OpenGL tricks. The Kwin window manager and compositor is running in its Qt5 / Frameworks 5 incarnation, and there’s konsole, which has also already been ported to Frameworks 5.

Of course, all the usual warnings apply: This is a very early state of development, many things are missing, unstable or do not perform well yet. There’s also a fair bit of user interface cleanup and streamlining to be expected.

We are just about to enter a state where the desktop becomes dogfoodable, so we can use it ourselves regularly and find and iron out all kinds of bugs. The good news is of course that this is the perfect time to get involved. While we’re not looking quite at the blank canvas that Plasma was when it came to be, right now we really are shaping the future of Plasma, you can take part in it and make it happen. We’ve compiled a list of tasks for Plasma 2 that need to be tackled. There’s of course also a lot of work still to be done for KDE Frameworks 5: many tasks, big and small are longing for attention. If there’s something interesting in there for you, or if you would like to see it happen more quickly, jump in! If you’re interested, in the release plans for all this new goodness, I recommend reading this article on KDE’s Dot. Rumours say that there’s an interesting follow-up article planned, so stay tuned!

If you want to give it a spin, you can build the whole thing from our git repositories, or use the Kubuntu Neon 5 packages to set up a test system.